
Securing Single Page Applications

@PhilippeDeRyck https://www.websec.be

Philippe De Ryck

Traditional Web Applications

2

POST newItem.phpDescription:

Deadline:

Add to List

Create New Task

Cooking

25/02/2015

25/02/2015

Overview

30/03/2015
Cooking
B-day party

Parse request

Store data

Retrieve all data

Generate HTML

Send response

Deadline Task

Add New

<html>
…

</html>

Traditional Web Applications

3

GET sortyBy?col=Task

Description:

Deadline:

Add to List

Create New Task

Cooking

25/02/2015

25/02/2015

Overview

30/03/2015
Cooking
B-day party

Parse request

Store data

Retrieve all data

Generate HTML

Send response

Deadline Task

Add New Sorting API

25/02/2015
30/03/2015

Cooking
B-day party

Deadline Task

<table>
…

</table>

Single Page Applications

4

POST /items/
Description:

Deadline:

Add to List

Create New Task

Cooking

25/02/2015

Parse request

Store data

Send response

25/02/2015

Overview

30/03/2015
Cooking
B-day party

Deadline Task

Add New

25/02/2015
30/03/2015

Cooking
B-day party

Deadline Task

OK

What’s behind a Single Page Application

5

Description:

Deadline:

Add to List

Create New Task

Cooking

25/02/2015

Overview

30/03/2015 B-day party
Deadline Task

25/02/2015
30/03/2015

Cooking
B-day party

Deadline Task

Show completed tasks

https://items.example.com

https://items.example.com/#/completedhttps://items.example.com/#/completed

$routeProvider.when('/overview', {
templateUrl: ’overview.html’,
controller: ‘OverviewCtrl’

}).
$routeProvider.when('/completed',
{

templateUrl: ’completed.html’,
controller: ‘CompletedCtrl’

});

AngularJS routing

What’s behind a Single Page Application

6

Description:

Deadline:

Add to List

Create New Task

Cooking

25/02/2015

Completed Tasks

31/12/2014
01/01/2015

Party
Recover

Deadline Task

Show Overview

https://items.example.com

<html ng-app>

<div ng-controller=“NewTaskCtrl”>
…

</div>

<div ng-view>
</div>

</html

myApp.controller(‘CompletedCtrl’,
[‘$scope’, function($scope) {
$scope.completed = …

}]);

AngularJS controllers

<h3>Completed Tasks</h3>

<li ng-repeat=“task in completed”>
{{task.deadline}} {{task.descr}}

AngularJS templates

What’s behind a Single Page Application

7

§ The backend of an SPA has three general responsibilities
§ Serve static application files
§ Provide access to the business logic through an API
§ Persistent data storage

§ Frontend and backend are completely decoupled
§ HTTP is the transport mechanism between both
§ RESTful API is a good match for this scenario

§ Decoupled backend needs to stand on its own
§ Validate data
§ Enforce workflows

What’s behind a Single Page Application

8https://scotch.io/tutorials/build-a-restful-api-using-node-and-express-4

What’s behind a Single Page Application

9

§ Properties of a RESTful API
§ Separation of concern between client and server
§ Stateless on the server-side
§ Clear caching decisions (yes or no)
§ Uniform interface

§ Many concrete implementations available
§ Heavyweight enterprise frameworks (e.g. Java, .NET)
§ Lightweight JavaScript tools (e.g. NodeJS)
§ Even more lightweight, REST-enabled databases (e.g. CouchDB)

Architectural styles and the design of network-based software architectures, R. T. Fielding

What’s behind a Single Page Application

10

§ Consuming a REST API using XHR

var url = ”http://…/api/bears/0”
var xhr = new XMLHttpRequest();
xhr.open("DELETE", url, true);
xhr.onreadystatechange = function () {

if (xhr.readyState == 4) {
if (xhr.status == 200) {

//Bye bye bear 0
}

}
}
xhr.send();

var api = $resource
(”http://…/api/bears/:id”)

api.$delete({id: 0},
function(v, h) { /* success */ },
function(res) { /* error */ }

);

Classic XHR AngularJS $resource

The Agenda for Today

11

§ Stateless Session Management
§ Moving from server-side to client-side session management
§ Cookie-based sessions vs token-based sessions

§ Common Authorization Problems
§ Cross-Site Request Forgery and Direct Object References

§ Cross-Site Scripting
§ Dealing with XSS in client-side frameworks

§ Conclusion

About Me – Philippe De Ryck

12

§ Postdoctoral Researcher @ DistriNet (KU Leuven)
§ PhD on client-side Web security
§ Expert in the broad field of Web security
§ Main author of the Primer on Client-Side Web Security

§ Running the Web Security training program
§ Dissemination of knowledge and research results
§ Public training courses and targeted in-house training
§ Target audiences include industry and researchers

https://www.websec.be@PhilippeDeRyck

Stateless Session Management

13

Using Cookies to Manage Sessions

14

Some-shop.com

Show orders
List of orders

Go to some-shop.com
Hello stranger

Login as Philippe
Hello Philippe

Logged_in: true
User: Philippe
Admin: true

3a99a4d1e8f496

Logged_in: true
User: NotPhilippe
Admin: false

7ad3e9f78bc808Go to some-shop.com
Hello stranger

Login as NotPhilippe
Hello NotPhilippe

Logged_in: false

Logged_in: false

1

2

Properties of Cookie-Based Sessions

15

§ Session identifiers and objects are bearer tokens
§ The token represents ownership of the session

§ Cookies are managed by the browser
§ Stored automatically
§ Automatically attached to every request, if the domain matches

§ Common threats against cookie-based session management
§ Brute forcing a session identifier
§ Session hijacking and session fixation
§ Cross-Site Request Forgery

Moving Towards Stateless APIs

16

§ On the server
§ Results in a stateful API
§ Gives the server full control over the session

• Track active sessions, invalidate expired sessions
§ Requires the use of a session identifier (bearer token)

§ On the client
§ Stateless API pushes all session information to the client
§ Server has no control over active sessions
§ Requires additional protection of the session data at the client

Client-Side Sessions

17

§ A session object is sent back and forth
§ Contains data about the current session
§ Needs to be stored by the client
§ Needs to be sent to the server when needed

§ Cookies are merely a medium, not a requirement
§ Cookies are stored automatically by a browser
§ Cookies are attached automatically by a browser

• Still vulnerable to CSRF attacks

§ Token-based approaches are an equally valid medium

Tokens as an Alternative to Cookies

§ Tokens are sent to the client
§ In an HTTP header or in the body of the response
§ The client-side application attaches them to outgoing requests

some-shop.com

hackedblog.com

Login as Philippe
Hello Philippe
Show orders
List of orders

Show latest blog post
Latest blog post

Change email address
Dude, where’s your token?

Client-Side Sessions with Tokens

19

§ The session data is the value of the token
§ Sent to the client by any means
§ Often with the Authorization HTTP header, using Bearer as value

§ Browsers do not handle tokens automatically
§ Client-side application will have to extract and store the token
§ Client-side application needs to attach the token to requests
§ Often taken care of by client-side application frameworks
§ Easier to share across domains than cookies

§ Mitigates CSRF attacks by design

20
http://jwt.io/

JSON Web Token
§ A JWT just looks like a blob of data

§ Contains three sections of base64-encoded data

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJkaXN0cmluZXQuY3Mua3VsZXV2
ZW4uYmUiLCJleHAiOjI0MjUwNzgwMDAwMDAsIm5hbWUiOiJwaGlsaXBwZSIsImFkbWluIjp0c

nVlfQ.dIi1OguZ7K3ADFnPOsmX2nEpF2Asq89g7GTuyQuN3so

{
"alg": "HS256",
"typ": "JWT"

}

{
"iss": ”distrinet.cs

.kuleuven.be",
"exp": 1425078000000,
"name": "philippe",
"admin": true

}

HMACSHA256(
base64UrlEncode(header)
+ "." +
base64UrlEncode(payload),
“secret”

)

Header Payload Signature

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJkaXN0cmluZXQuY3Mua3VsZXV2
ZW4uYmUiLCJleHAiOjI0MjUwNzgwMDAwMDAsIm5hbWUiOiJwaGlsaXBwZSIsImFkbWluIjp0c

nVlfQ.dIi1OguZ7K3ADFnPOsmX2nEpF2Asq89g7GTuyQuN3so

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJkaXN0cmluZXQuY3Mua3VsZXV2
ZW4uYmUiLCJleHAiOjI0MjUwNzgwMDAwMDAsIm5hbWUiOiJwaGlsaXBwZSIsImFkbWluIjp0c

nVlfQ.dIi1OguZ7K3ADFnPOsmX2nEpF2Asq89g7GTuyQuN3so

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJkaXN0cmluZXQuY3Mua3VsZXV2
ZW4uYmUiLCJleHAiOjI0MjUwNzgwMDAwMDAsIm5hbWUiOiJwaGlsaXBwZSIsImFkbWluIjp0c

nVlfQ.dIi1OguZ7K3ADFnPOsmX2nEpF2Asq89g7GTuyQuN3so

JSON Web Token
§ The standardized way to exchange session data

§ Part of a JSON-based Identity Protocol Suite
• Together with specs for encryption, signatures and key exchange

§ Used by OpenID Connect, on top of OAuth 2.0

§ Requires explicit handling by the client-side application
§ Difficult in traditional HTML Web applications
§ Easy with modern client-side JavaScript frameworks

§ Easy to pass around between services

Client-Side Sessions with JWT

23

§ JWT data is base64-encoded, so the client can read it
§ Use the information in the token to reflect access control in UI

• E.g. hide or show admin features

§ Tokens are sent in headers or URI parameters
§ No automatic browser involvement
§ Client-side application needs to extract and attach tokens
§ Session persistency needs to be implemented as well

§ In modern JS frameworks, this is not a big deal

JWT In Practice
§ JWT are base64-encoded JSON objects

§ By default, no confidentiality, so careful with sensitive data
§ Integrity is built in through the signature

§ Widely supported, with libraries for almost every language
§ Well suited to exchange identity information between microservices

§ JWT has gotten a bad reputation lately
§ Two implementation vulnerabilities in the libraries

Session Management Wrap Up

25

§ Traditional server-side give the highest level of control
§ Session identifiers generally carried by cookies
§ Requires keeping state on the server

§ Client-side sessions are more flexible
§ Server does not need to keep state, but has less control
§ Requires integrity and/or confidentiality checks to be in place

§ Commonly accepted best practice in modern applications
§ Client-side sessions in a token-based approach

• Standardized technology: JWT

Common Authorization Problems

26

The Impact of Client-side Sessions

27

§ Server-side session object contains user information
§ Referred to with the long and unique session identifier
§ Sent in an HTTP-Only and Secure cookie over HTTPS

Some-shop.com

Show orders
List of orders

Go to some-shop.com
Hello stranger

Login as Philippe
Hello Philippe

Logged_in: true
User: Philippe
Admin: false

3a99a4d1e8f496

if(!req.session.Admin) {
throw new Error(“No admin privileges”)

}
else {

// Do admin stuff
}

The Impact of Client-side Sessions

28

§ Client-side session object contains user information
§ Unserialized into a session object at the server-side
§ Sent in an HTTP-Only and Secure cookie over HTTPS

Show orders
List of orders

Go to some-shop.com
Hello stranger

Login as Philippe
Hello Philippe

Logged_in: true
User: Philippe
Admin: false

session

if(!req.session.Admin) {
throw new Error(“No admin privileges”)

}
else {

// Do admin stuff
}

Som
e-shop.com

Protecting Client-Side Session Data

29

§ Session data is provided by the client
§ This data should be considered untrusted until verified
§ Protection can be offered using encryption or signatures

§ Encryption offers confidentiality on the client
§ Recommended if sensitive data is stored inside the session object

§ A signature offers integrity on the server
§ If a client tampered with the data, the server will be able to notice it

Client-Side Sessions with Cookies

30

§ The session cookie is base64 encoded
§ This is no encryption, merely a transformation

§ Signature is generated using a server secret and HMAC function
§ The client should never be able to generate a valid signature

Som
e-shop.com

Show orders
List of orders

Go to some-shop.com
Hello stranger

Login as Philippe
Hello Philippe

Logged_in: true
User: Philippe
Admin: true

session=TG9nZ2VkX2luOiB0cnVlClVzZXI6IFBoaWxpcHBlCkFkbWluOiB0cnVlCg==

session-sig=7699bf4963dbec0e66a9d8e213dfe3c0ca07ee87

Do Not Rely on Untrusted Data

31

§ In a Web application, untrusted data is everywhere
§ Everything that comes from the client should not be trusted

§ Common authorization vulnerabilities
§ Relying on cookie values without scrutiny
§ Relying on hidden form parameters
§ Using hidden paths

§ Only trust data if you are sure it’s not been tampered with
§ The knowledge of a random identifier or token
§ Verification of a signature of the data

http://privacylog.blogspot.be/2015/05/all-artisan-state-user-uploaded-photos.html

Direct Object References

33

http://www.artisanstate.com/photo-books/photobook-edit.html?projectGUID=413312

http://privacylog.blogspot.be/2015/05/all-artisan-state-user-uploaded-photos.html

Direct Object References

34

http://www.artisanstate.com/photo-books/photobook-edit.html?projectGUID=413311

http://privacylog.blogspot.be/2015/05/all-artisan-state-user-uploaded-photos.html

http://www.theregister.co.uk/2011/06/14/citigroup_website_hack_simple/

DOR Are Very Common in REST APIs

36

§ API relies on the use of IDs
§ Data storage also relies on the use of IDs
§ Common to simply use the object ID as the REST identifier
§ Easy to forget access control checks, leading to vulnerabilities

ObjectIDs in MongoDB

37

§ MongoDB uses 12-byte object identifiers

§ But they are actually sequential identifiers
§ Beware if you use these IDs directly in your application
§ Make sure you perform server-side access control checks!

> ObjectId()
ObjectId("56daed0d9a0d54b9c7fe354a")

> ObjectId()
ObjectId("56daed0d9a0d54b9c7fe354b")
> ObjectId()
ObjectId("56daed0d9a0d54b9c7fe354c")
> ObjectId()
ObjectId("56daed0d9a0d54b9c7fe354d")

Direct Object References

38

§ Explicitly listed in the OWASP top 10 as a vulnerability
§ Very natural mistake to make
§ You will not spot this unless someone tells you about it

§ Explicitly check ownership/permissions for each request
§ Use the user identifier from the session data to compare with

§ Alternatively, avoid the use of direct object references
§ Filter out all objects that the user should not access
§ Use indirect identifiers that refer to this list, and translate to DOR

Best Practices

39

§ Do not make security decisions with untrusted data
§ Treat all input as untrusted, unless you have verified the integrity
§ Signed session data is well-suited for this purpose

§ Always check ownership/permissions before granting access
§ Use user information from a trusted session object
§ Perform these checks everywhere, even for “hidden” functions

§ Never ever make security decisions on the client-side
§ Make them in the backend, and test the backend for security
§ Optionally use them at the client-side to improve the UI

Cross-Site Scripting

40

41https://threatpost.com/details-on-wordpress-zero-day-disclosed/112435/
http://venturebeat.com/2015/11/08/wordpress-now-powers-25-of-the-web/

The Samy Worm

42
http://samy.pl/popular/

XSS Vulnerabilities Make You Money

43
http://blog.detectify.com/post/39209711597/how-i-got-a-3500-usd-facebook-bug-bounty

44

45
http://www.zdnet.com/article/ubuntu-forums-hacked-1-82m-logins-email-addresses-stolen/

Load iframe from http://some-shop.com?prod=5
&color=blue<script>alert(1)</script>

Cross-Site Scripting

46

§ Started as code injection from one site into another
§ Hence the cross-site and scripting
§ Introduced by Microsoft in 2000

http://hackedblog.com

http://some-shop.com

Reflected XSS

47

Hey, checkout product X. It is awesome!
<a href=“http://some-shop.org/product.php?id=1&name=
<script>alert(‘Never gonna let you down!’)</script>

Show Product (id=1, name=)

Product page

<html><body><h1> </h1><p> </p></body></html>

products

Stored XSS

48

Add review

Thanks for the review!

reviews

I can really recommend product X. It is awesome!
<script>alert(‘Never gonna let you down!’)</script>

Show Reviews

Reviews page

<html><body>… …</body></html>

DOM-Based XSS

49

Hey, checkout product X. It is awesome!
<a href=“http://some-shop.org/allproducts.php#1

<script>alert(‘Never gonna let you down!’)</script>

Get page with all products

Product page

<html><body><p>

</p></body></html>

products

permalink.innerHTML = '<a href="' +
window.location.hash.split('#')[1] +
'.php">Link to product’;

The Truth about DOM-Based XSS

50

§ DOM-based XSS is essentially XSS in a JS context
§ But the injection happens at the client-side, in the browser
§ Therefore, the server can not protect against DOM-based XSS

§ It can be reflected, persistent or neither
§ If embedded in the fragment identifier, it stays within the browser
§ The server will never see the payload

§ It’s often considered exotic, and not a real risk
§ This is just really ignorant of DOM-based XSS

What Can an Attacker Do With XSS

51

§ Anything within the context of the application
§ Modify the DOM
§ Read the page contents
§ Extract username/password from a form
§ Steal autocomplete values
§ Use geolocation/webcam/… permissions
§ Read cookies to do session hijacking attacks
§ Run a JavaScript-based port scanner

§ Elevate privileges through the XSS attack
§ By getting hold of an administrator account

Apache.org Compromise

52

1. Report bug with obscured URL
containing reflected XSS attack

http://tinyurl.com/XXXXXXX

2. Admin opens link,
compromising their session

3. Attacker disable notifications
for a hosted project

4. Attacker changes upload
path to location that can

execute JSP files

5. Attacker added new bug
reports with JSP attachments

6. Attacker browses and copies
filesystem through JSP. Installs
backdoor JSP with webserver

privileges

http://blogs.apache.org/infra/entry/apache_org_04_09_2010

Apache.org Compromise

53

7. Attacker installs JAR to
collect passwords on login

8. Triggered logins by sending
out password reset mails

9. One of the passwords
matched an SSH account with

full sudo access

10. The accessible machine
had user home folders, with

cached subversion credentials

11. From the subversion
machine, privilege escalation

was unsuccessful

http://blogs.apache.org/infra/entry/apache_org_04_09_2010

XSS Is a Stupid Problem to Have

54

§ XSS is an injection vulnerability
§ Boils down to confusion between data and code
§ Untrusted data is interpreted as application-provided code

§ Other injection vulnerabilities suffer from the same problems
§ SQL injection, Command injection, …

§ Solution is simple: Separate data from code

query = “SELECT * FROM users WHERE login=‘“ + login + “’”;

query = “SELECT * FROM users WHERE login=:user;”
data = { “user”: login }

PREPARED STATEMENTS IN SQL

Separating Data and Code on the Web

55

§ This is virtually impossible to achieve
§ Code is all HTML, JS, CSS, … content
§ Data is all the rest, which can be trusted or untrusted

§ Server-side composition versus client-side processing
§ The server knows what is data and what is code
§ But the browser only receives one HTML page

§ Design flaw that has caused a lot of grief

Context-Sensitive Output Encoding

56

§ There are many different contexts in an HTML page
§ HTML body <h1>DATA</h1>
§ HTML attributes <div id=‘DATA’>
§ Stylesheet context body { background-color: DATA;}
§ Script context alert(“DATA”);
§ URL context

§ Each context has specific encoding needs
§ E.g. translating < > & … to < > & ...
§ E.g. Escaping “ and ‘

But Sometimes, Encoding Is Not an Option

57

§ Many sites allow the use of HTML in user-provided data
§ Image inclusions in forums
§ Styles from WYSIWYG editors

http://ckeditor.com/demo

HTML Sanitization

58

§ We can do that with a regular expression!
§ Let’s go ask

http://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags/1732454#1732454

Even enhanced irregular regular
expressions as used by Perl are not

up to the task of parsing HTML.

Every time you attempt to parse HTML
with regular expressions, the unholy
child weeps the blood of virgins, and
Russian hackers pwn your webapp.

Proper HTML Sanitization

59

§ First, you need to parse the HTML the proper way
§ Most languages offer a parser or have parsing libraries available

§ You can filter dangerous content from the parsed HTML
§ Explicitly whitelist allowed elements and strip the rest
§ Do not forget about attributes (e.g. JS event handlers)
§ Make sure you’re up to date with the latest specs (e.g. HTML5)

§ Best solution: use a well-vetted sanitization library

Can JS MVC Frameworks Help?

GET /tasks?sortBy=name

Description:

Deadline:

Add to List

Create New Task

Cooking

25/02/2015

25/02/2015

Overview

30/03/2015
Cooking
B-day party

Parse request

Store data

Retrieve all data

Generate HTML

Send response

Deadline Task

Add New Sorting API

25/02/2015
30/03/2015

Cooking
B-day party

Deadline Task

[{…},{…}]

Server-Side Template Composition
§ JavaScript MVC frameworks change how the DOM works

§ Extensions through elements, attributes, etc.
§ New interfaces
§ Often in combination with templating

<graph class="visitor-graph">
<axis position="left"></axis>
<axis position="bottom"></axis>
<line name="typical-week" line-data="model.series.typicalWeek"></line>
<line name="this-week" line-data="model.series.thisWeek"></line>
<line name="last-week" line-data="model.series.lastWeek"></line>

</graph>

EXTENDING THE DOM

Server-Side Template Composition
§ Traditional Web applications are based on HTML pages

§ They often integrate a JS MVC framework to improve the UI
• E.g. Embedding AngularJS in dynamically constructed JSP pages

§ Server applies context-aware XSS protection

<script src=“knockout-2.3.0.js"></script>
<div data-bind="x:alert(1)" />
<script>

ko.applyBindings();
</script>

KNOCKOUT.JS EXAMPLE

Mustache Security

https://code.google.com/p/mustache-security/

Mustache Security
§ Project dedicated to JS MVC security pitfalls

§ Assuming there is an injection vector
§ Assuming there is conventional XSS filtering in place
§ What can an attacker do?

§ New behavior often breaks existing security assumptions
§ Bypass currently used security mechanisms
§ Script injection possible whenever a data attribute is allowed

https://code.google.com/p/mustache-security/

Separating Front End and Back End
§ Beware of server-side composition of templates

§ Generally a bad idea, because of dynamic behavior
§ If you must do this, AngularJS 1.2+ enforces quite a good sandbox

§ Separating the front end from the back end
§ Server provides client-side application as static files
§ Server offers data through a well-designed API
§ Client-side application contains the dynamic behavior

Single Page Applications

POST /items/
Description:

Deadline:

Add to List

Create New Task

Cooking

25/02/2015

Parse request

Store data

Send response

25/02/2015

Overview

30/03/2015
Cooking
B-day party

Deadline Task

Add New

25/02/2015
30/03/2015

Cooking
B-day party

Deadline Task

OK

Single Page Applications
§ Run on a client-side JavaScript MVC framework

§ Backed by a data-driven REST API

§ Back end has no context knowledge
§ So can also not provide useful input filtering and output encoding
§ Client-side application will have to take care of this

§ So how does this work in AngularJS?

Example Case – User-Provided Images

<textarea ng-model=“x”></textarea>
<div>{{x}}</div>

ANGULARJS TEMPLATE

USER INPUT

RENDERED HTML

Example Case – User-Provided Images

<textarea ng-model=“x”></textarea>
<div ng-bind=“x”></div>

ANGULARJS TEMPLATE

USER INPUT

RENDERED HTML

Example Case – User-Provided Images

<textarea ng-model=“x”></textarea>
<div ng-bind-html=“x”></div>

ANGULARJS TEMPLATE

USER INPUT

Error: [$sce:unsafe] Attempting to use
an unsafe value in a safe context.

RENDERED HTML

Dammit

Check Documentation

Go to StackOverflow

And you Find This Little Gem

http://stackoverflow.com/questions/9381926/angularjs-insert-html-into-view

Example Case – User-Provided Images

<textarea ng-model=“x”></textarea>
<div ng-bind-html=“x | sanitize”></div>

ANGULARJS TEMPLATE

USER INPUT

RENDERED HTML

Example Case – User-Provided Images

<textarea ng-model=“x”></textarea>
<div ng-bind-html=“x | sanitize”></div>

ANGULARJS TEMPLATE

<img src=”http://some-shop.com/coolcar.png"
onerror=“alert(1)” />

USER INPUT

RENDERED HTML

How Did That Happen?

Strict Contextual Escaping
§ AngularJS tries to protect you from injection attacks

§ Let it, it’s really good at it!

§ ng-bind will never produce HTML

<textarea ng-model=“x”></textarea>
<div ng-bind=”x"></div>

ANGULARJS TEMPLATE

<div ng-bind=”x">
<img src=”http://some-shop.com/coolcar.png"

onerror=“alert(1)” />
</div>

GENERATED HTML

Strict Contextual Escaping
§ AngularJS tries to protect you from injection attacks

§ Let it, it’s really good at it!

§ ng-bind-html can produce HTML, but not without protection

<textarea ng-model=“x”></textarea>
<div ng-bind-html=”x"></div>

ANGULARJS TEMPLATE

Error: [$sce:unsafe] Attempting to use
an unsafe value in a safe context.

GENERATED HTML

Strict Contextual Escaping
§ AngularJS tries to protect you from injection attacks

§ Let it, it’s really good at it!

§ ng-bind-html can produce HTML, but not without protection
§ Enable automatic sanitization with ngSanitize
§ Removes dangerous features from content

Example Case – User-Provided Images

<textarea ng-model=“x”></textarea>
<div ng-bind-html=“x”></div>

ANGULARJS TEMPLATE

<img src=”http://some-shop.com/coolcar.png"
onerror=“alert(1)” />

USER INPUT

RENDERED HTML

angular.module(“test”, [“ngSanitize”])…

ANGULARJS CODE

Strict Contextual Escaping
§ AngularJS tries to protect you from injection attacks

§ Let it, it’s really good at it!

§ ng-bind-html can produce HTML, but not without protection
§ Enable automatic sanitization with ngSanitize
§ Removes dangerous features from content

§ If you really really want raw trusted HTML …
§ $sce.trustAsHtml() marks a string as trusted, disabling sanitization

Strict Contextual Escaping - trustAsHtml

http://stackoverflow.com/questions/9381926/angularjs-insert-html-into-view

Strict Contextual Escaping - trustAsHtml

<textarea ng-model=“x”></textarea>
<div ng-bind-html=”x | i_really_know_my_security"></div>

ANGULARJS TEMPLATE

angular.module(“test”,[])
.filter("i_really_know_my_security",

['$sce', function($sce) {
return function(htmlCode){
return $sce.trustAsHtml(htmlCode);

}
}]);

ANGULARJS CODE

Data Binding Best Practices
§ You should always use the default binding mechanism

§ This will produce safe output, depending on the context
§ The framework is really good at this, so let it do its job

§ If you need a safe set of HTML tags in the output
§ Use sanitization, either within the framework or from a library
§ Do not try to write this yourself

§ Use the trusted HTML features for static code only

CSP and JS MVC Frameworks
§ Default behavior of MVC frameworks is not CSP compatible

§ Dependent on string-to-code functionality
§ Requires unsafe-eval in CSP, which kind of misses the point

§ However, frameworks are catching up quickly
§ EmberJS enables CSP by default when you create a new app

EmberJS Enables CSP by Default
§ Taken care of by ember-cli-content-security-policy

§ CSP policy can be updated through environment.js

ENV.contentSecurityPolicyHeader = "Content-Security-Policy"
ENV.contentSecurityPolicy = {

'default-src': "'none'",
'script-src': "'self’ https://",
…

}

UPDATING THE EMBERJS CSP POLICY

EmberJS Enables CSP by Default

89

Content-Security-Policy-Report-Only:
default-src ‘none';
script-src ‘self’;
font-src ‘self’;
img-src ‘self’;
style-src ‘self’;
media-src ‘self’;
connect-src ‘self’ http://0.0.0.0:4200/csp-report;
report-uri http://0.0.0.0:4200/csp-report;

EMBERJS DEFAULT CSP POLICY

CSP and JS MVC Frameworks
§ Default behavior of MVC frameworks is not CSP compatible

§ Dependent on string-to-code functionality
§ Requires unsafe-eval in CSP, which kind of misses the point

§ However, frameworks are catching up quickly
§ EmberJS enables CSP by default when you create a new app
§ AngularJS offers a special CSP mode, making it compatible with

CSP

<html ng-app ng-csp> … </html>

CSP-COMPLIANT ANGULARJS

Enabling Dynamic Behavior with CSP
§ So how does AngularJS process event handlers?

§ Parse ‘ng’-attributes
§ Create anonymous functions, connected with events
§ Wait for event handler to fire

§ Technically, not inline, and no eval()

$element.onclick = function($event) {
$event[‘view’][‘alert’](‘1’)

}

https://code.google.com/p/mustache-security/

Do Not Underestimate XSS

92

§ XSS is a vulnerability with serious consequences
§ If you get defaced, you got away easy
§ Look at Apache.org

§ XSS is practically a certainty in a traditional Web application
§ Very hard to have systematic defenses

§ Proper defense is context-sensitive output encoding
§ Use a well-vetted library to do get it done

Aim to Separate Data and Code

93

§ JS frameworks are actually very successful in doing this
§ Allow them to fully shine as a client-side framework
§ Do not mix with server-side code, but use a clean REST API

§ AngularJS and EmberJS eradicate developer-originated XSS
§ Unless you really want to shoot yourself in the foot

§ Combined with CSP, they make a strong team
§ Get ahead of XSS attacks
§ Covers various vectors, including JS and CSS

Conclusion

94

Conclusion

95

§ Single page applications are here to stay
§ Great user experience
§ The architecture empowers the client-side
§ Clear separation of concerns between client and server

• Really awesome in the battle against XSS

§ Security responsibilities have been reassigned
§ The server has little to no context anymore
§ Authorization decisions can never leave the server!
§ More data comes from the client, so less data can be trusted

Progressive Web Security course

1. Why simply deploying HTTPS will not get you an A+ grade

2. How to avoid common pitfalls in authentication and authorization

3. Why modern security technologies will eradicate XSS

4. Four new browser communication mechanisms, and how they affect you

State-of-the-art
technologies

Hands-on labs
included

3rd edition starts on April 12th 2016
https://www.websec.be

Securing Single Page Applications
Acknowledgements

Icons by Visual Pharm (https://icons8.com)

Securing Single Page Applications

philippe.deryck@cs.kuleuven.be

/in/philippederyck

https://www.websec.be

@PhilippeDeRyck

Philippe De Ryck

