Securing Single Page Applications
Philippe De Ryck

Y @PhilippeDeRyck (@ https://www.websec.be

A Secure
- Application
@ Development

DistriNet

p®iMinds ~ |CEEEY

Traditional Web Applications

Create New Task

Description: [___Cooking) POST newlItem.php Parse request
Deadline: [__25/02/2015 |

[Add to List)

Store data

Retrieve all data

Overview

Generate HTML

Deadline Task
25/02/2015 Cooking <html>
30/03/2015 B-day party

Send response

</html>

[Add New]

Traditional Web Applications

Create New Task

Description: | Cooking)
Deadline: [__25/02/2015 |

[Add to List)

Overview

* Deadline v Task
30/03/2015 B-day party
25/02/2015 Cooking

[Add New]

GET sortyBy?col=Task
<table>

</table>

Parse request
Store data
Retrieve all data

Generate HTML

Send response

Sorting API

Single Page Applications

Overview
Parse request

Deadline W Task POST /items/
30/03/2015 B-day party
25/02/2015 Cooking

Store data

OK

__AddNew | Send response

What’s behind a Single Page Application

~ https://items.example.com

WwWw

Create New Task

Description: | Cooking '
Deadline: |__25/02/2015 |

 AddtoList |

Overview

V Deadline Task
25/02/2015 Cooking
30/03/2015 B-day party

AngularJS routing

$routeProvider .when('/overview', {
templateUrl: ’'overview.html’,
controller: ‘OverviewCtrl’

}) .

SrouteProvider .when('/completed’,

{
templateUrl: 'completed.html’,
controller: ‘CompletedCtrl’

})

[Show completed tasks]

https://items.example.com/#/completed

What’s behind a Single Page Application

~ https://items.example.com

WWwWw

<html ng-app>

<div ng-controller="NewTaskCtrl”>

</div>

<div ng-view>
</div>

AngularJS controllers

myApp.controller (‘CompletedCtrl’,
[‘\$scope’, function ($scope) ({
Sscope.completed = ..

}1)

AngulardS templates

<h3>Completed Tasks</h3>

<li ng-repeat=“"task in completed”>
{{task.deadline}} {{task.descr}}
</1li>

What’s behind a Single Page Application

= The backend of an SPA has three general responsibilities
= Serve static application files
= Provide access to the business logic through an API
= Persistent data storage

= Frontend and backend are completely decoupled
= HTTP is the transport mechanism between both
= RESTful APl is a good match for this scenario

= Decoupled backend needs to stand on its own
= Validate data
= Enforce workflows

What’s behind a Single Page Application

Route HTTP Verb Description

/api/bears GET Get all the bears.

/api/bears POST Create a bear.
/api/bears/:bear_id GET Get a single bear.
/api/bears/:bear_id PUT Update a bear with new info.
/api/bears/:bear_id DELETE Delete a bear.

https://scotch.io/tutorials/build-a-restful-api-using-node-and-express-4

What’s behind a Single Page Application

= Properties of a RESTful API

= Separation of concern between client and server
= Stateless on the server-side

= Clear caching decisions (yes or no)

= Uniform interface

= Many concrete implementations available
= Heavyweight enterprise frameworks (e.g. Java, .NET)
= Lightweight JavaScript tools (e.g. NodedJS)
= Even more lightweight, REST-enabled databases (e.g. CouchDB)

Architectural styles and the design of network-based software architectures, R. T. Fielding 9

What’s behind a Single Page Application
= Consuming a REST API using XHR

var
var
xhr
xhr

xhr

Classic XHR

url = ”"http://../api/bears/0”
xhr = new XMLHttpRequest() ;

.open ("DELETE" , url, true);
.onreadystatechange = function () {

if (xhr.readyState == 4) ({
if (xhr.status == 200) {
//Bye bye bear 0
}

.send () ;

AngularJS $resource

var api = $resource
("http://../api/bears/:id")

api.$delete({id: 0},
function(v, h) { /* success */ },
function(res) { /* error */ }

) ;

10

The Agenda for Today

= Stateless Session Management
= Moving from server-side to client-side session management
= Cookie-based sessions vs token-based sessions

= Common Authorization Problems
= Cross-Site Request Forgery and Direct Object References

= Cross-Site Scripting
= Dealing with XSS in client-side frameworks

= Conclusion

11

About Me - Philippe De Ryck

= Postdoctoral Researcher @ DistriNet (KU Leuven)

= PhD on client-side Web security
= Expert in the broad field of Web security
= Main author of the Primer on Client-Side Web Security

= Running the Web Security training program et bunes
= Dissemination of knowledge and research results - “'” -
= Public training courses and targeted in-house training - Side Web Security

= Target audiences include industry and researchers

Y @PhilippeDeRyck (@ https://www.websec.be

Stateless Session Management

13

Using Cookies to Manage Sessions

® B

® B

Go to some-shop.com
Hello stranger
Login as Philippe
Hello Philippe
Show orders
List of orders

Go to some-shop.com
Hello stranger

Login as NotPhilippe
Hello NotPhilippe

Some-shop.com

® B3a99a4dle8f496

Logged in: faiee
User: Philippe
Admin: true

® 2ad3e9f78bc808

Logged in: fatee
User: NotPhilippe
Admin: false

14

Properties of Cookie-Based Sessions

= Session identifiers and objects are bearer tokens
= The token represents ownership of the session

= Cookies are managed by the browser
= Stored automatically
= Automatically attached to every request, if the domain matches

= Common threats against cookie-based session management
= Brute forcing a session identifier
= Session hijacking and session fixation
= Cross-Site Request Forgery

15

Moving Towards Stateless APIs

= On the server
= Results in a stateful API

= Gives the server full control over the session
* Track active sessions, invalidate expired sessions

= Requires the use of a session identifier (bearer token)

= On the client

= Stateless API pushes all session information to the client
= Server has no control over active sessions
= Requires additional protection of the session data at the client

16

Client-Side Sessions

= A session object is sent back and forth
= Contains data about the current session
= Needs to be stored by the client
= Needs to be sent to the server when needed

= Cookies are merely a medium, not a requirement
= Cookies are stored automatically by a browser

= Cookies are attached automatically by a browser
 Still vulnerable to CSRF attacks

= Token-based approaches are an equally valid medium

17

Login as Philippe

Tokens as an Alternative to Cookies

Show orders @l

List of orders
some-shop.com

> Change email address
Dude, where’s your token?

Latest blog post hackedblog.com

Show latest blog post

’- Inn

= Tokens are sent to the client
= Inan HTTP header or in the body of the response
= The client-side application attaches them to outgoing requests

Client-Side Sessions with Tokens

= The session data is the value of the token
= Sentto the client by any means
= Often with the Authorization HTTP header, using Bearer as value

= Browsers do not handle tokens automatically
= Client-side application will have to extract and store the token
= Client-side application needs to attach the token to requests
= Often taken care of by client-side application frameworks
= Easier to share across domains than cookies

= Mitigates CSRF attacks by design

19

e INTE)

JSON Web Tokens are an open, industry standard RFC 7519 method for
representing claims securely between two parties.

http.//jwt.io/

JSON Web Token

= AJWT just looks like a blob of data
Contains three sections of base64-encoded data

eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCJI9. eydpc3MiOiJkaXNOcmluZXQuY3Mua3VsZXV2
ZW4uYmUiLCJ1leHAiOjIOMjUwNzgwMDAwMDAs Im5hbWUiOiJwaGlsaXBwZSIsImFkbWluI jpOc
nV1fQ.dIilOguZ7K3ADFnPOsmX2nEpF2Asq89g7GTuyQuN3so

{
"iss": ”distrinet.cs HMACSHAZ256 (
{ base64UrlEncode (header)
"alg': "HS256", .kuleuven.be”, + "." +
"typ": "JWT" "exp': 1425078000000, base64UrlEncode (payload),
} "name": '"philippe", “"secret”
"admin'": true)
}

Header Payload Signature

JSON Web Token

= The standardized way to exchange session data

= Part of a JSON-based Identity Protocol Suite
« Together with specs for encryption, signatures and key exchange
= Used by OpenlID Connect, on top of OAuth 2.0

= Requires explicit handling by the client-side application
= Difficult in traditional HTML Web applications
= Easy with modern client-side JavaScript frameworks

= Easy to pass around between services

Client-Side Sessions with JWT

= JWT data is baseb4-encoded, so the client can read it

= Use the information in the token to reflect access control in Ul
* E.g. hide or show admin features

= Tokens are sent in headers or URI parameters
= No automatic browser involvement

= Client-side application needs to extract and attach tokens
= Session persistency needs to be implemented as well

= |In modern JS frameworks, this is not a big deal

23

JWT In Practice

= JWT are base64-encoded JSON objects

= By default, no confidentiality, so careful with sensitive data
= Integrity is built in through the signature

= Widely supported, with libraries for almost every language
= Well suited to exchange identity information between microservices

= JWT has gotten a bad reputation lately
= Two implementation vulnerabillities in the libraries

Session Management Wrap Up

= Traditional server-side give the highest level of control
= Session identifiers generally carried by cookies
= Requires keeping state on the server

= (Client-side sessions are more flexible

= Server does not need to keep state, but has less control
= Requires integrity and/or confidentiality checks to be in place

= Commonly accepted best practice in modern applications

= Client-side sessions in a token-based approach
+ Standardized technology: JWT

25

Common Authorization Problems

26

The Impact of Client-side Sessions

Some-shop.com ﬁl

Go to some-shop.com

® Hello stranger ® 3a99a4dle8£f496

® Login as Philippe Logged in: true
Hello Philippe User: Philippe

] Show orders Admin: false

List of orders

= Server-side session object contains user information

= Referred to with the long and unique session identifier
= Sentin an HTTP-Only and Secure cookie over HTTPS

if ('req.session.Admin) {
throw new Error (“No admin privileges”)

}
else {
// Do admin stuff
27

}

The Impact of Client-side Sessions

® session

Admin: false

Go to some-shop.com - @l
Hello stranger S
Logged in: true Login as Philippe o
User: Philippe @ Hello Philippe g
@ Show orders S

List of orders

= Client-side session object contains user information
= Unserialized into a session object at the server-side

= Sentin an HTTP-Only and Secure cookie over HTTPS

if ('req.session.Admin) {

}

else {

}

throw new Error (“"No admin privileges”)

// Do admin stuff
28

Protecting Client-Side Session Data

= Session data is provided by the client
= This data should be considered untrusted until verified
= Protection can be offered using encryption or signatures

= Encryption offers confidentiality on the client
= Recommended if sensitive data is stored inside the session object

= A signature offers integrity on the server
= |f a client tampered with the data, the server will be able to notice it

29

Client-Side Sessions with Cookies

WWwWwW

Go to some-shop.com
Hello stranger
Login as Philippe
D Hello Philippe
&3 Show orders
List of orders

woo-doys-awog

@ session=TGI9nZ2VkX21uOiB0cnV1ClVzZXI6IFBoaWxpcHBl1CkFkbWluOiBOcnV1Cg=—=

@) session-sig=7699bf4963dbecle66a9d8e213dfe3cOcallee8?

= The session cookie is base64 encoded
= This is no encryption, merely a transformation

= Signature is generated using a server secret and HMAC function

= The client should never be able to generate a valid signature -

Do Not Rely on Untrusted Data

= In a Web application, untrusted data is everywhere
= Everything that comes from the client should not be trusted

= Common authorization vulnerabilities
= Relying on cookie values without scrutiny
= Relying on hidden form parameters
= Using hidden paths

= Only trust data if you are sure it's not been tampered with
= The knowledge of a random identifier or token
= Verification of a signature of the data

31

2015-05-12

All Artisan State User-Uploaded Photos are Publicly Accessible

Update 2015-05-15: It appears this one specific issue has been fixed as of today.

Artisan State is a photo printing service that specializes in flush mount books and other photo
books. They are managed from San Francisco with fulfillment in Hong Kong and Houston and
manufacturing in Shanghai. They have a pretty website and reputation seems somewhere
between iPhone-level travel books and professionally-bound books you would get with an in-
person event photographer. | was preparing a book for one of my clients and as | am uploading
the photos, which are personal, the first thought was... should I really be uploading these
photos to this website, we just met?

http.//privacylog.blogspot.be/2015/05/all-artisan-state-user-uploaded-photos. html

Direct Object References

http://www.artisanstate.com/photo-books/photobook-edit.html?projectGUID=413312

. . n - " - .

e e

R . | Y W

http.//privacylog.blogspot.be/2015/05/all-artisan-state-user-uploaded-photos. html

33

Direct Object References

http://www.artisanstate.com/photo-books/photobook-edit.html?projectGUID=413311

34

http.//privacylog.blogspot.be/2015/05/all-artisan-state-user-uploaded-photos. html

Citigroup hack exploited easy-to-detect web flaw
Brute force attack exposes 200,000 accounts
14 Jun 2011 at 21:25, Dan Goodin) O 106 0 30 @ 39

Hackers who stole bank account details for 200,000 Citigroup customers infiltrated the company's
system by exploiting a garden-variety security hole in the company's website for credit card users,
according to a report citing an unnamed security investigator.

The New York Times reported that the technique allowed the hackers to leapfrog from account to
account on the Citi website by changing the numbers in the URLs that appeared after customers had
entered valid usernames and passwords. The hackers wrote a script that automatically repeated the
exercise tens of thousands of times, the NYT said in an article published Monday.

“Think of it as a mansion with a high-tech security system — that the front door wasn't locked tight,”
reporters Nelson D. Schwartz and Eric Dash wrote.

The underlying vulnerability, known as an insecure direct object reference, is so common that it's
included in the Top 10 Risks list compiled by the Open Web Application Security Project. It results when
developers expose direct references to confidential account numbers instead of using substitute
characters to ensure the account numbers are kept private.

http://www.theregister.co.uk/2011/06/14/citigroup _website _hack_simple/

DOR Are Very Common in REST APIs

Route HTTP Verb Description

/api/bears GET Get all the bears.

/api/bears POST Create a bear.
/api/bears/:bear_id GET Get a single bear.
/api/bears/:bear_id PUT Update a bear with new info.
/api/bears/:bear_id DELETE Delete a bear.

= API relies on the use of IDs
= Data storage also relies on the use of IDs
= Common to simply use the object ID as the REST identifier

= Easy to forget access control checks, leading to vulnerabilities
36

ObjectiDs in MongoDB

= MongoDB uses 12-byte object identifiers

> ObjectId()
ObjectId ("56daed0d%9a0d54b9c7fe354a")

= But they are actually sequential identifiers
= Beware if you use these IDs directly in your application
= Make sure you perform server-side access control checks!

> ObjectId()
ObjectId ("56daed0d9a0d54b9c7£fe354b")
> ObjectId()
ObjectId("56daed0d9a0d54b9c7£fe354c")
> ObjectId()
ObjectId ("56daed0d9a0d54b9c7£fe3544d")

37

Direct Object References

= Explicitly listed in the OWASP top 10 as a vulnerability
= Very natural mistake to make
= You will not spot this unless someone tells you about it

= Explicitly check ownership/permissions for each request
= Use the user identifier from the session data to compare with

= Alternatively, avoid the use of direct object references
= Filter out all objects that the user should not access
= Use indirect identifiers that refer to this list, and translate to DOR

38

Best Practices

= Do not make security decisions with untrusted data
= Treat all input as untrusted, unless you have verified the integrity
= Signed session data is well-suited for this purpose

= Always check ownership/permissions before granting access

= Use user information from a trusted session object
= Perform these checks everywhere, even for “hidden” functions

= Never ever make security decisions on the client-side
= Make them in the backend, and test the backend for security
= Optionally use them at the client-side to improve the Ul

39

Cross-Site Scripting

40

WordPress now powers 25% of the Web

EMIL PROTALINSKI N
TAGS: AUTOMATTIC, TO

DETAILS ON WORDPRESS ZERO DAY DISCLOSED

https://threatpost.com/details-on-wordpress-zero-day-disclosed/112435/
http.://venturebeat.com/2015/11/08/wordpress-now-powers-25-of-the-web/

41

The Samy Worm

efox

matks Tools Help

@ E http://mail.myspace.com/index. cFm?fuseaction=mail. friendRequestsaMytoken— | EEG—_—_—

The web ©

g claggsmates.com-
1 graduated in: s
State: Year: ﬁ

Home | Browse Search | Invite | Rank | Mail | Blog | Favorites | Forum @ Groups || Events | Gan es | Music || Classifieds
KICK ASS

Mail Cégter | RULE
Friend Réquest Managly

¢y Inbox ‘£
Listing 1-10 of 919664 1 2 3 4 5 >> of 9 Next >
& saved
Cp Sent
Trash Oct 4
x 2005
[=] Bulletin 10:22 PM

Friend
Requests
Pending
Requests

Event
Invites

Springfield { Trinity High NEWW YOUR
High (1084) King Highi676) School (528) High School (520)

Friend Requests Here [help]

Lulu the Loveable Freak whnts to be your
f L

[Approve] [Deny‘] [Hend Message]

MAD PHOTOSHOP SKILLS

] o©Oct4,
Fly Fishing Trip in 2003

3 10:21 PM
Mexico
All inclusive
package in
Ascension Bay,
Mexico, from
US$1,600...

www.pescamaya.com

AlysOn!! wants to be your friend!

[Approve | [Deny | [SendMessage |

\ SHE WANTS ME

Erika wants to be your friend!

Oct 4
Yellow Dog O 2005

Flyfishing 10:20 PM
Adventures '
Specializing in
destination angling
packages
throughout the U...
www.yellowdogfl..,

[Approve] [Deny] [Send Message]

Elk River Guiding
Company - Fernie

BC (9) .
Fly fish the Elk &'oniine Nowt

River in the

Canadian Rockies . Octd

http.//samy.pl/popular/

XSS Vuilnerabilities Make You Money

How | got a $3,500 USD Facebook
Bug Bounty

| recently found a Stored XSS on Facebook, which resulted in a Bug Bounty Reward. If you
want to know how an XSS could be exploited, you can read my colleague Mathias' blog

post about it. Anyway, here's how it went down.

| was actually working on finding flaws on Dropbox to begin with. | noticed that when
using their web interface there were some restrictions on what filenames that were
allowed. If you tried to rename a file to for example:

'">.txt

it was not possible. You got this error:

[The following characters are not allowed: \/:?* <>" |]

43

http.//blog.detectify.com/post/392097 11597/how-i-got-a-3500-usd-facebook-bug-bounty

Search for people, places and things

The page at www.facebook.com says:
facebook.com

)
e axt
htips:/ /www . dropbox.com/s/Oexlhjalu2s7rv...

Document - 45 bytes

8 Only Me \LPTON Cancel

Ted Rosén updated a file on Dropbox
“>

"> <img srcex
onerror=alert{document.domain)>_jpg
image -~ 9.97 X8

:;: Uke - Comment - Unfollow Post - Share - 15 ites ago

Ted Rosén created the group

Uke - Comment - Unfollow Post - 16 minutes ago

Ted Rosén

Find Friends

Home & ©

O 2*Oar))

Ubuntu forums hacked; 1.82M logins, email
addresses stolen

Canonical, the company behind the Ubuntu operating system, has suffered a massive data
breach on its forums. All usernames, passwords, and email addresses were stolen.

i

ubuntuforums.org/ane X
C AH http://ubuntuforums.org/announce. htm O .l,‘,. l J

45

http.//www.zdnet.com/article/ubuntu-forums-hacked-1-82m-logins-email-addresses-stolen/

Cross-Site Scripting

= Started as code injection from one site into another

= Hence the cross-site and scripting
= Introduced by Microsoft in 2000

http://hackedblog.com

Load iframe from http://some-shop.com?prod=5
The page at some-shop.com:3000 says:
€

http://some-shop.com

46

Reflected XSS

<html><body><hl> Ml </h1><p> | |</p></body></html>

B Sl
WWWwW
\ -/

Show Product (id=1, name=IH)

Product page —
_products

N

Hey, checkout product X. It is awesome!
<a href=“http://some-shop.org/product.php?id=1&name=
<script>alert(‘'‘Never gonna let you down!’)</script> 47

<html><body>.. | |[|[| m -</body></html>

& Sl
WWWwW
\ -/

c The page at some-shop.org says: S h OW ReVi eWS

() Never gonna let you down!

[o Reviews page .
reviews

Add review . ~N_
Thanks for the review!

I can really recommend product X. It is awesome!
<script>alert(‘Never gonna let you down!’)</script> 48

DOM-Based XSS

permalink.innerHTML = '<a href="' + <html><body><p>

window.location.hash.split('#')[1] +
'.php">Link to product'; </p></body></html>

& Sl
WWWwW
\ -/

Get page with all products

Product page o
_products

N

Hey, checkout product X. It is awesome!
<a href=“http://some-shop.org/allproducts.php#l
<script>alert(‘'Never gonna let you down!’)</script> 49

The Truth about DOM-Based XSS

= DOM-based XSS is essentially XSS in a JS context

= But the injection happens at the client-side, in the browser
= Therefore, the server can not protect against DOM-based XSS

= |t can be reflected, persistent or neither
= If embedded in the fragment identifier, it stays within the browser
= The server will never see the payload

= |t's often considered exotic, and not a real risk
= This is just really ignorant of DOM-based XSS

50

What Can an Attacker Do With XSS

= Anything within the context of the application
Modify the DOM

Read the page contents

Extract username/password from a form

Steal autocomplete values

Use geolocation/webcam/... permissions

Read cookies to do session hijacking attacks
Run a JavaScript-based port scanner

= Elevate privileges through the XSS attack
= By getting hold of an administrator account

51

Apache.org Compromise

- - h
1. Report bug with obscured URL L 2. Admin opens link, }

containing reflected XSS attack - compromising their session

\http://tinyurl.com/XXXXXXX/
4 \// 4. Attacker changes upload

3. Atté}gl:ear r?cl)zet]glde r:gfcggatlons - path to location that can
proj execute JSP files y

N Y, _
- \// 6. Attacker browses and copies\

5. Attacker added new bug - filesystem through JSP. Installs
reports with JSP attachments backdoor JSP with webserver
. - _ privileges)
52

http://blogs.apache.org/infra/entry/apache _org 04 09 2010

Apache.org Compromise

—

collect passwords on login

matched an SSH account with
full sudo access

LS. Triggered logins by sending}

{ /. Attacker installs JAR to
out password reset mails L

had user home folders, with
cached subversion credentials

machine, privilege escalation
was unsuccessful

9. One of the passwords J

{ 10. The accessible machine J { 11. From the subversion

http://blogs.apache.org/infra/entry/apache org 04 09 2010 53

XSS Is a Stupid Problem to Have

= XSS is an injection vulnerability
= Boils down to confusion between data and code
= Untrusted data is interpreted as application-provided code

= QOther injection vulnerabilities suffer from the same problems
= SQL injection, Command injection, ...

= Solution is simple: Separate data from code

PREPARED STATEMENTS IN SQL

query = “SELECT * FROM users WHERE login='"“ + login + “'7;
query = “SELECT * FROM users WHERE login=:user;”
data = { “user”: login } o4

Separating Data and Code on the Web

= This is virtually impossible to achieve
= Codeis all HTML, JS, CSS, ... content

= Data is all the rest, which can be trusted or untrusted

= Server-side composition versus client-side processing
= The server knows what is data and what is code
= But the browser only receives one HTML page

= Design flaw that has caused a lot of grief

55

Context-Sensitive Output Encoding

= There are many different contexts in an HTML page

= HTML body <h1>DATA</h1>

= HTML attributes <div id='DATA’ >

= Stylesheet context body { background-color: DATA;}
= Script context alert (“DATA"”) ;

= URL context

= Each context has specific encoding needs
= E.g.translating <> & ... to < > & ...
= E.g. Escaping “and"

56

But Sometimes, Encoding Is Not an Option

= Many sites allow the use of HTML in user-provided data

= Image inclusions in forums
= Styles from WYSIWYG editors

X B R G - | < m||@mE Q| @ souce|
‘ B I S ||| |4 |92 H Styles ~ || Format || ? ’

Apollo 11

Apollo 11 was the spaceflight that landed the first humans, Americans Neil
Armstrong and Buzz Aldrin, on the Moon on July 20, 1969, at 20:18 UTC.
Armstrong became the first to step onto the lunar surface 6 hours later on July
21 at 02:56 UTC.

Armstrong spent about three-and-a-half two and a half hours outside the
spacecraft, Aldrin slightly less; and together they collected 47.5 pounds
(21.5 kg) of lunar material for return to Earth. A third member of the mission,
Michael Collins, piloted the command spacecraft alone in lunar orbit until
Armstrong and Aldrin returned to it for the trip back to Earth.

Broadcasting and quotes I®

http.://ckeditor.com/demo

57

HTML Sanitization

\!
’ \
Let's go ask |=| stackoverflow

Even enhanced irregular regular

expressions as used by Perl are not
up to the task of parsing HTML.

with regular expressions, the unholy
child weeps the blood of virgins, and
Russian hackers pwn your webapp.

Every time you attempt to parse HTML

We can do that with a regular expression!

You can't parse [X]HTML with regex. Because HTML can't be parsed by regex. Regex is not a tool
that can be used to correctly parse HTML. As | have answered in HTML-and-regex questions here
so many times before, the use of regex will not allow you to consume HTML. Regular expressions
are a tool that is insufficiently sophisticated to understand the constructs employed by HTML.
HTML is not a regular language and hence cannot be parsed by regular expressions. Regex
queries are not equipped to break down HTML into its meaningful parts. so many times but it is not
getting to me. Even enhanced irregular regular expressions as used by Perl are not up to the task
of parsing HTML. You will never make me crack. HTML is a language of sufficient complexity that it
cannot be parsed by regular expressions. Even Jon Skeet cannot parse HTML using regular
expressions. Every time you attempt to parse HTML with regular expressions, the unholy child
weeps the blood of virgins, and Russian hackers pwn your webapp. Parsing HTML with regex
summons tainted souls into the realm of the living. HTML and regex go together like love, marriage,
and ritual infanticide. The <center> cannot hold it is too late. The force of regex and HTML together
in the same conceptual space will destroy your mind like so much watery putty. If you parse HTML
with regex you are giving in to Them and their blasphemous ways which doom us all to inhuman
toil for the One whose Name cannot be expressed in the Basic Multilingual Plane, he comes.
HTML-plus-regexp will liquify the nerves of the sentient whilst you observe, your psyche withering
in the onslaught of horror. Reg'é'x-based HTML parsers are the cancer that is killing StackOverflow
it is too late it is too late we cannot be saved the trangession of a child ensures regex will consume
all living tissue (except for HTML which it cannot, as previously prophesied) dear lord help us how
can anyone survive this scourge using regex to parse HTML has doomed humanity to an eternity of
dread torture and security holes using regex as a tool to process HTML establishes a breach
between this world and the dread realm of corrupt entities (like SGML entities, but more corrupt) a
mere glimpse of the world of regex parsers for HTML will instantly transport a programmer's
consciousness into a world of ceaseless screaming, he comes;thepestilent-slithy regex-infection
will devour your HTML parser, application and existence for all time like Visual Bgsic only worse
he comes he comes do not fight he comgs, his unholy radiancé destroying all enlightenment,
HTML tags leakjng feom your eyes”hke liquid pain, the song of reular express+en—pafs+ﬁg—wul
extinguish the voices of mortal man from the gphere | can see it can you see it lt it is beautiful the

f inal snuf fing of the lies of Man ALL IS LO gTAl..L IS LOST the pony he cornes he gom

eemes thg ichor permeates all MY,FACE JACE d_g god no NO NOOOO NO stop the an-g[‘ S
are not real ZALGO |é TONg THE PONY, mé@m@ i

http.//stackoverflow.com/questions/1732348/regex-match- open-tags-except—xhtml-self-conta/ned tags/1 732454#1732454

Proper HTML Sanitization

= First, you need to parse the HTML the proper way
= Most languages offer a parser or have parsing libraries available

= You can filter dangerous content from the parsed HTML
= Explicitly whitelist allowed elements and strip the rest
= Do not forget about attributes (e.g. JS event handlers)
= Make sure you're up to date with the latest specs (e.g. HTMLYS)

= Best solution: use a well-vetted sanitization library

59

Can JS MVC Frameworks Help?

WWWwW

Create New Task

Description: [Cooking)
Deadline: | 25/02/2015)

[Add to List]

Overview

' Deadline v Task
30/03/2015 B-day party
25/02/2015 Cooking

Add New |

GET /tasks?sortBy=name

[{.},{.}]

Parse request
Store data
Retrieve all data

Generate HTML

Send response

Sorting API

Server-Side Template Composition

= JavaScript MVC frameworks change how the DOM works
= Extensions through elements, attributes, etc.
= New interfaces
= Often in combination with templating

a EXTENDING THE DOM
4 N\
<graph class="visitor-graph">
<axis position="left"></axis>
<axis position="bottom"></axis>
<line name="typical-week" line-data="model.series.typicalWeek"></line>
<line name="this-week" line-data="model.series.thisWeek'"></line>
<line name="last-week" line-data="model.series.lastWeek'"></line>
. </graph>

Server-Side Template Composition

= Traditional Web applications are based on HTML pages

= They often integrate a JS MVC framework to improve the Ul
- E.g. Embedding AngulardS in dynamically constructed JSP pages
= Server applies context-aware XSS protection

@

KNOCKOUT.JS EXAMPLE

<scri

<div
<scri

</scr

c The page at localhost:3000 says:
®

./script>

Mustache Security

https://code.google.com//mustache-security/

Mustache Security

= Project dedicated to JS MVC secuirity pitfalls
= Assuming there is an injection vector
= Assuming there is conventional XSS filtering in place
= What can an attacker do?

= New behavior often breaks existing security assumptions
= Bypass currently used security mechanisms
= Script injection possible whenever a data attribute is allowed

https://code.google.com//mustache-security/

Separating Front End and Back End

= Beware of server-side composition of templates
= Generally a bad idea, because of dynamic behavior
= |If you must do this, AngulardS 1.2+ enforces quite a good sandbox

= Separating the front end from the back end
= Server provides client-side application as static files
= Server offers data through a well-designed API
= Client-side application contains the dynamic behavior

Single Page Applications

Overview
Parse request

Deadline W Task POST /items/
30/03/2015 B-day party
25/02/2015 Cooking

Store data
OK

LAdd e] Send response

Single Page Applications

= Run on a client-side JavaScript MVC framework
= Backed by a data-driven REST API

= Back end has no context knowledge
= So can also not provide useful input filtering and output encoding
= Client-side application will have to take care of this

= So how does this work in AngulardS?

Example Case - User-Provided Images

u ANGULARJS TEMPLATE

<textarea ng-model=“x"></textarea>
<div>{{x}}</div>

USER INPUT

=)

RENDERED HTML

Example Case - User-Provided Images

u ANGULARJS TEMPLATE

<textarea ng-model=“x"></textarea>
<div ng-bind=“x"></div>

USER INPUT

=)

RENDERED HTML

Example Case - User-Provided Images

u ANGULARJS TEMPLATE

<textarea ng-model=“x"></textarea>
<div ng-bind-html=“x"></div>

USER INPUT

@|| RENDERED HTML

Html

Error: [$sce:unsafe] Attempting to use
an unsafe value in a safe context.

Check Documentation

Error: $sce:unsafe BRI s Rec
Require a safe/trusted value

Attempting to use an unsafe value in a safe context.

Description

The value provided for use in a specific context was not found to be safe/trusted for use.

Angular's Strict Contextual Escaping (SCE) mode (enabled by default), requires bindings in certain contexts to result in a value that is

trusted as safe for use in such a context. (e.g. loading an Angular template from a URL requires that the URL is one considered safe for
loading resources.)

This helps prevent XSS and other security issues. Read more at Strict Contextual Escaping (SCE)

You may want to include the ngSanitize module to use the automatic sanitizing.

Go to StackOverflow

\\
I_I stackoverflow

And you Find This Little Gem

)y % You can also create a filter like so:

59 var app = angular.module("demoApp", ['ngResource’']);

A 4 app.filter("sanitize”™, ['$sce', function($sce) {
return function(htmlCode){
return $sce.trustAsHtml(htmlCode) ;

3
31);

Then in the view

<div ng-bind-html="whatever_needs_to_be_sanitized | sanitize"></div>

share improve this answer answered Aug 26 '14 at 18:52
u Katie Astrauskas
, 591 # 2 e 2

2 Fantastic! And this answer is cleaner and more angular-esk than the others. — snumpy Sep 1 '14 at 18:12
5 Gorgeous. Thank you. This is the correct answer. — birbr Sep 22 "14 at 20:29

Awesome thanks! — Mitch Glenn Sep 22 '14 at 23:18

Beautiful solution! Thank you! — the_critic Dec 29 "14 at 21:36

@Katie Astrauskas, thank you for the anwer! Very clean way. BTW ngResource dependency is not
neccesary. — Athlan Mar 7 at 12:09

http://stackoverflow.com/questions/9381926/anqularjs-insert-html-into-view

Example Case - User-Provided Images

u ANGULARJS TEMPLATE

<textarea ng-model=“x"></textarea>
<div ng-bind-html=“x | sanitize”></div>

USER INPUT

=)

RENDERED HTML

Example Case - User-Provided Images

u ANGULARJS TEMPLATE

<textarea ng-model=“x"></textarea>
<div ng-bind-html=“x | sanitize”></div>

USER INPUT

<img src="http://some-shop.com/coolcar.png"
onerror=“alert(1l)” />

=)

RENDERED HTML

How Did That Happen?

Error: $sce:unsafe BRI s Rec
Require a safe/trusted value

Attempting to use an unsafe value in a safe context.

Description

The value provided for use in a specific context was not found to be safe/trusted for use.

Angular's Strict Contextual Escaping (SCE) mode (enabled by default), requires bindings in certain contexts to result in a value that is

trusted as safe for use in such a context. (e.g. loading an Angular template from a URL requires that the URL is one considered safe for
loading resources.)

This helps prevent XSS and other security issues. Read more at Strict Contextual Escaping (SCE)

You may want to include the ngSanitize module to use the automatic sanitizing.

Strict Contextual Escaping

= AngularJS tries to protect you from injection attacks
= Letit, it's really good at it!

= ng-bind will never produce HTML

u ANGULARJS TEMPLATE

<textarea ng-model=“x"></textarea>
‘ <div ng-bind="x"></div>
GENERATED HTML J

<div ng-bind="x">
<img src="http://some-shop.com/coolcar.png"
onerror=“alert(l)” />

=)

</div>

Strict Contextual Escaping

= AngularJS tries to protect you from injection attacks
= Letit, it's really good at it!

= ng-bind-htmlcan produce HTML, but not without protection

u ANGULARJS TEMPLATE
‘ <textarea ng-model=“x"></textarea>
<div ng-bind-html="x"></div>
GENERATED HTML J /

Error: [$sce:unsafe] Attempting to use
an unsafe value in a safe context.

=)

Strict Contextual Escaping

= AngularJS tries to protect you from injection attacks
= Letit, it's really good at it!

= ng-bind-htmlcan produce HTML, but not without protection
= Enable automatic sanitization with ngSanitize
= Removes dangerous features from content

Example Case - User-Provided Images

u ANGULARJS TEMPLATE

<div ng-bind-html="“x"></div>

<textarea ng-model="“x"></textarea> \

ﬁ
Il ANGULARJS CoDE

angular .module (“test”, [“ngSanitize”])..
USER INPUT
| <img src="http://some-shop.com/coolcar.png"
onerror=“alert(l)” />

@|| RENDERED HTML

Strict Contextual Escaping

= AngularJS tries to protect you from injection attacks
= Letit, it's really good at it!

= ng-bind-htmlcan produce HTML, but not without protection
= Enable automatic sanitization with ngSanitize
= Removes dangerous features from content

= |f you really really want raw trusted HTML ...
= $sce.trustAsHtml() marks a string as trusted, disabling sanitization

Strict Contextual Escaping - trustAsHtml

)y % You can also create a filter like so:

59 var app = angular.module("demoApp", ['ngResource’']);

A 4 app.filter("sanitize”™, ['$sce', function($sce) {
return function(htmlCode){
return $sce.trustAsHtml(htmlCode) ;

3
31);

Then in the view

<div ng-bind-html="whatever_needs_to_be_sanitized | sanitize"></div>

share improve this answer answered Aug 26 '14 at 18:52
u Katie Astrauskas
, 591 # 2 e 2

2 Fantastic! And this answer is cleaner and more angular-esk than the others. — snumpy Sep 1 '14 at 18:12
5 Gorgeous. Thank you. This is the correct answer. — birbr Sep 22 "14 at 20:29

Awesome thanks! — Mitch Glenn Sep 22 '14 at 23:18

Beautiful solution! Thank you! — the_critic Dec 29 "14 at 21:36

@Katie Astrauskas, thank you for the anwer! Very clean way. BTW ngResource dependency is not
neccesary. — Athlan Mar 7 at 12:09

http.://stackoverflow.com/questions/9381926/angularjs-insert-htmi-into-view

Strict Contextual Escaping - trustAsHtml

u ANGULARJS TEMPLATE

<textarea ng-model="“x"></textarea>
<div ng-bind-html="x | i really know my security"></div>

;sr ANGULARJS CODE

/angular.module(“test”,[]))

.filter ("i really know my security",
['$Ssce', function($sce) {
return function (htmlCode) {
return S$sce.trustAsHtml (htmlCode) ;

}
31)

Data Binding Best Practices

= You should always use the default binding mechanism
= This will produce safe output, depending on the context
= The framework is really good at this, so let it do its job

= |f you need a safe set of HTML tags in the output
= Use sanitization, either within the framework or from a library
= Do not try to write this yourself

= Use the trusted HTML features for static code only

CSP and JS MVC Frameworks

= Default behavior of MVC frameworks is not CSP compatible
= Dependenton string-to-code functionality
= Requires unsafe-evalin CSP, which kind of misses the point

= However, frameworks are catching up quickly
= EmberJS enables CSP by default when you create a new app

© 2015-04-23 13:14:10.245

» Refused to evaluate a string as JavaScript because 'unsafe-eval' is not an allowed source of script in the following Content Security Policy anqular.js:956
directive: "default-src 'self'". Note that 'script-src' was not explicitly set, so 'default-src' is used as a fallback.
© 2015-04-23 13:14:10.248 Refused to execute inline script because it violates the following Content Security Policy directive: "default-src 'self'". localhost/:7

Either the 'unsafe-inline' keyword, a hash ('sha256-8t@yDUzWXHTRAW8Z1eNf3KCXv-LC9-qIQhEogC@1I7g="), or a nonce ('nonce-...') is required to enable inline execution.
Note also that 'script-src' was not explicitly set, so 'default-src' is used as a fallback.

Q 2015-04-23 13:14:10.295 Uncaught Error: [$injector:modulerr] Failed to instantiate module csrf due to: angular.js:4138
Error: [$injectorinomod] Module 'csrf' is not available! You either misspelled the module name or forgot to load it. If registering a module ensure that you specify
the dependencies as the second argument.
http://errors.angularjs.org/1.3.15/$injector/nomod?p@=csrf

at http://localhost:3000/bower components/angular/anqular.js:63:12

at http://localhost:3000/bower components/anqular/anqular.js:1774:17

at ensure (http://localhost:3000/bower components/anqular/anqular.js:1698:38)
at module (http://localhost:3000/bower components/anqular/anqular.js:1772:14)

at http://localhost:3000/bower components/anqular/anqular.js:4115:22
et _farCach [(httns //1acalhact 1 3000 Ihavior _camnanante Ianaular/anoanlar i01292,90)

EmberJS Enables CSP by Default

= Taken care of by ember-cli-content-security-policy
= CSP policy can be updated through environment.js

UPDATING THE EMBERJS CSP PoLIcy

e

ENV.contentSecurityPolicy = {
'default-src': "'none'",
'script-src': "'self’ https://",

~

ENV.contentSecurityPolicyHeader = "Content-Security-Policy"

EmberJS Enables CSP by Default

EMBERJS DEFAULT CSP PoLicy

-

Content-Security-Policy-Report-Only:
default-src ‘none';
script-src ‘self’;
font-src ‘self’;
img-src ‘self’;
style-src ‘self’;
media-src ‘self’;
connect-src ‘self’ http://0.0.0.0:4200/csp-report;
report-uri http://0.0.0.0:4200/csp-report;

J

39

CSP and JS MVC Frameworks

= Default behavior of MVC frameworks is not CSP compatible
= Dependenton string-to-code functionality
= Requires unsafe-evalin CSP, which kind of misses the point

= However, frameworks are catching up quickly
= EmberJS enables CSP by default when you create a new app

= AngularJS offers a special CSP mode, making it compatible with
CSP

CSP-COMPLIANT ANGULARJS

=)

<html ng-app ng-csp> .. </html>

Enabling Dynamic Behavior with CSP

= So how does AngulardS process event handlers?
= Parse ‘ng’-attributes

= Create anonymous functions, connected with events
= Wait for event handler to fire

Selement.onclick = function ($Sevent) {
Sevent|[‘view’][‘alert’] ('1’)

}

= Technically, not inline, and no eval()

https://code.google.com/p/mustache-security/

Do Not Underestimate XSS

= XSS is a vulnerability with serious consequences
= |If you get defaced, you got away easy
= Look at Apache.org

= XSS is practically a certainty in a traditional Web application
= Very hard to have systematic defenses

= Proper defense is context-sensitive output encoding
= Use a well-vetted library to do get it done

92

Aim to Separate Data and Code

= JS frameworks are actually very successful in doing this
= Allow them to fully shine as a client-side framework
= Do not mix with server-side code, but use a clean REST API

= AngulardS and EmberdS eradicate developer-originated XSS
= Unless you really want to shoot yourself in the foot

= Combined with CSP, they make a strong team
= Get ahead of XSS attacks
= Covers various vectors, including JS and CSS

93

= Single page applications are here to stay
= Great user experience
= The architecture empowers the client-side

= Clear separation of concerns between client and server
* Really awesome in the battle against XSS

= Security responsibilities have been reassigned
= The server has little to no context anymore
= Authorization decisions can never leave the server!
= More data comes from the client, so less data can be trusted

95

Dismﬂngt Progressive Web Security course

/F® iMinds

A e

State-of-the-art Hands-on labs
technologies included

Why simply deploying HTTPS will not get you an A+ grade

How to avoid common pitfalls in authentication and authorization
Why modern security technologies will eradicate XSS

Four new browser communication mechanisms, and how they affect you

3rd edition starts on April 12th 2016

https://lwww.websec.be

Securing Single Page Applications

Acknowledgements

Icons by Visual Pharm (https://icons8.com)

Securing Single Page Applications
Philippe De Ryck

% philippe.deryck@cs.kuleuven.be

Al Sccure

Y @PhilippeDeRyck @m) lication
@ Development

IN Jin/philippederyck DiSIriNEI

I https://www.websec.be ywiminds |EETEEEY

